当前位置:首页 > 比特币新闻 > 正文

比特币的核心技术开发之交易(上)

来源: 互联网时间:2018-04-13 16:35:00

前言

交易(transaction)是比特币的核心所在,而区块链唯一的目的,也正是为了能够安全可靠地存储交易。在区块链中,交易一旦被创建,就没有任何人能够再去修改或是删除它。今天,我们将会开始实现交易。不过,由于交易是很大的话题,我会把它分为两部分来讲:在今天这个部分,我们会实现交易的基本框架。在第二部分,我们会继续讨论它的一些细节。

由于比特币采用的是 UTXO 模型,并非账户模型,并不直接存在“余额”这个概念,余额需要通过遍历整个交易历史得来。

比特币交易

在 blockchain.info 查看下图中的交易信息。

一笔交易由一些输入(input)和输出(output)组合而来:

type Transaction struct {

ID []byte

Vin []TXInput

Vout []TXOutput }

对于每一笔新的交易,它的输入会引用(reference)之前一笔交易的输出(这里有个例外,coinbase 交易),引用就是花费的意思。所谓引用之前的一个输出,也就是将之前的一个输出包含在另一笔交易的输入当中,就是花费之前的交易输出。交易的输出,就是币实际存储的地方。下面的图示阐释了交易之间的互相关联:

注意:

  1. 有一些输出并没有被关联到某个输入上
  2. 一笔交易的输入可以引用之前多笔交易的输出
  3. 一个输入必须引用一个输出

贯穿本文,我们将会使用像“钱(money)”,“币(coin)”,“花费(spend)”,“发送(send)”,“账户(account)” 等等这样的词。但是在比特币中,其实并不存在这样的概念。交易仅仅是通过一个脚本(script)来锁定(lock)一些值(value),而这些值只可以被锁定它们的人解锁(unlock)。

每一笔比特币交易都会创造输出,输出都会被区块链记录下来。给某个人发送比特币,实际上意味着创造新的 UTXO 并注册到那个人的地址,可以为他所用。

交易输出

先从输出(output)开始:

type TXOutput struct {

Value int

ScriptPubKey string }

输出主要包含两部分:

  1. 一定量的比特币(Value)
  2. 一个锁定脚本(ScriptPubKey),要花这笔钱,必须要解锁该脚本。

实际上,正是输出里面存储了“币”(注意,也就是上面的 Value 字段)。而这里的存储,指的是用一个数学难题对输出进行锁定,这个难题被存储在 ScriptPubKey 里面。在内部,比特币使用了一个叫做 Script 的脚本语言,用它来定义锁定和解锁输出的逻辑。虽然这个语言相当的原始(这是为了避免潜在的黑客攻击和滥用而有意为之),并不复杂,但是我们也并不会在这里讨论它的细节。你可以在这里 找到详细解释。

在比特币中,value 字段存储的是 satoshi 的数量,而不是 BTC 的数量。一个 satoshi 等于一百万分之一的 BTC(0.00000001 BTC),这也是比特币里面最小的货币单位(就像是 1 分的硬币)。

由于还没有实现地址(address),所以目前我们会避免涉及逻辑相关的完整脚本。ScriptPubKey 将会存储一个任意的字符串(用户定义的钱包地址)。

顺便说一下,有了一个这样的脚本语言,也意味着比特币其实也可以作为一个智能合约平台。

关于输出,非常重要的一点是:它们是不可再分的(indivisible)。也就是说,你无法仅引用它的其中某一部分。要么不用,如果要用,必须一次性用完。当一个新的交易中引用了某个输出,那么这个输出必须被全部花费。如果它的值比需要的值大,那么就会产生一个找零,找零会返还给发送方。这跟现实世界的场景十分类似,当你想要支付的时候,如果一个东西值 1 美元,而你给了一个 5 美元的纸币,那么你会得到一个 4 美元的找零。

发送币

现在,我们想要给其他人发送一些币。为此,我们需要创建一笔新的交易,将它放到一个块里,然后挖出这个块。之前我们只实现了 coinbase 交易(这是一种特殊的交易),现在我们需要一种通用的普通交易:

func NewUTXOTransaction(from, to string, amount int, bc *Blockchain) *Transaction { var inputs []TXInput var outputs []TXOutput

acc, validOutputs := bc.FindSpendableOutputs(from, amount)

if acc < amount {

log.Panic("ERROR: Not enough funds")

}

// Build a list of inputs

for txid, outs := range validOutputs {

txID, err := hex.DecodeString(txid)

for _, out := range outs {

input := TXInput{txID, out, from}

inputs = append(inputs, input)

} }

// Build a list of outputs

outputs = append(outputs, TXOutput{amount, to})

if acc > amount {

outputs = append(outputs, TXOutput{acc - amount, from})

// a change }

tx := Transaction{nil, inputs, outputs}

tx.SetID()

return &tx}

在创建新的输出前,我们首先必须找到所有的未花费输出,并且确保它们有足够的价值(value),这就是 FindSpendableOutputs 方法要做的事情。随后,对于每个找到的输出,会创建一个引用该输出的输入。接下来,我们创建两个输出:

  1. 一个由接收者地址锁定。这是给其他地址实际转移的币。
  2. 一个由发送者地址锁定。这是一个找零。只有当未花费输出超过新交易所需时产生。记住:输出是不可再分的。

FindSpendableOutputs 方法基于之前定义的 FindUnspentTransactions 方法:

func (bc *Blockchain) FindSpendableOutputs(address string, amount int) (

int, map[string][]int) {

unspentOutputs := make(map[string][]int)

unspentTXs := bc.FindUnspentTransactions(address)

accumulated := 0Work:

for _, tx := range unspentTXs {

txID := hex.EncodeToString(tx.ID)

for outIdx, out := range tx.Vout {

if out.CanBeUnlockedWith(address) && accumulated < amount {

accumulated += out.Value

unspentOutputs[txID] = append(unspentOutputs[txID], outIdx)

if accumulated >= amount {

break Work }

}

} }

return accumulated, unspentOutputs

}

这个方法对所有的未花费交易进行迭代,并对它的值进行累加。当累加值大于或等于我们想要传送的值时,它就会停止并返回累加值,同时返回的还有通过交易 ID 进行分组的输出索引。我们只需取出足够支付的钱就够了。

现在,我们可以修改 Blockchain.MineBlock 方法:

func (bc *Blockchain) MineBlock(transactions []*Transaction) {

... newBlock := NewBlock(transactions, lastHash)

...}

最后,让我们来实现 send 方法:

func (cli *CLI) send(from, to string, amount int) {

bc := NewBlockchain(from)

defer bc.db.Close()

tx := NewUTXOTransaction(from, to, amount, bc)

bc.MineBlock([]*Transaction{tx})

fmt.Println("Success!")}

发送币意味着创建新的交易,并通过挖出新块的方式将交易打包到区块链中。不过,比特币并不是一连串立刻完成这些事情(虽然我们目前的实现是这么做的)。相反,它会将所有新的交易放到一个内存池中(mempool),然后当矿工准备挖出一个新块时,它就从内存池中取出所有交易,创建一个候选块。只有当包含这些交易的块被挖出来,并添加到区块链以后,里面的交易才开始确认。

让我们来检查一下发送币是否能工作:

$ blockchain_go send -from Ivan -to Pedro -amount 6 00000001b56d60f86f72ab2a59fadb197d767b97d4873732be505e0a65cc1e37

Success!$ blockchain_go getbalance -address Ivan Balance of 'Ivan': 4

$ blockchain_go getbalance -address Pedro Balance of 'Pedro': 6

很好!现在,让我们创建更多的交易,确保从多个输出中发送币也正常工作:

$ blockchain_go send -from Pedro -to Helen -amount 2 00000099938725eb2c7730844b3cd40209d46bce2c2af9d87c2b7611fe9d5bdf

Success!$

blockchain_go send -from Ivan -to Helen -amount 2

000000a2edf94334b1d94f98d22d7e4c973261660397dc7340464f7959a7a9aa

Success!

现在,Helen 的币被锁定在了两个输出中:一个来自 Pedro,一个来自 Ivan。让我们把它们发送给其他人:

$ blockchain_go send -from Helen -to Rachel -amount 3

000000c58136cffa669e767b8f881d16e2ede3974d71df43058baaf8c069f1a0

Success!$ blockchain_go getbalance -address Ivan Balance of 'Ivan': 2

$ blockchain_go getbalance -address Pedro Balance of 'Pedro': 4

$ blockchain_go getbalance -address Helen Balance of 'Helen': 1

$ blockchain_go getbalance -address Rachel Balance of 'Rachel': 3

看起来没问题!现在,来测试一些失败的情况:

$ blockchain_go send -from Pedro -to Ivan -amount 5

panic: ERROR: Not enough funds

$ blockchain_go getbalance -address Pedro Balance of 'Pedro': 4

$ blockchain_go getbalance -address Ivan Balance of 'Ivan': 2

总结

虽然不容易,但是现在终于实现交易了!不过,我们依然缺少了一些像比特币那样的一些关键特性:

  1. 地址(address)。我们还没有基于私钥(private key)的真实地址。
  2. 奖励(reward)。现在挖矿是肯定无法盈利的!
  3. UTXO 集。获取余额需要扫描整个区块链,而当区块非常多的时候,这么做就会花费很长时间。并且,如果我们想要验证后续交易,也需要花费很长时间。而 UTXO 集就是为了解决这些问题,加快交易相关的操作。
  4. 内存池(mempool)。在交易被打包到块之前,这些交易被存储在内存池里面。在我们目前的实现中,一个块仅仅包含一笔交易,这是相当低效的。

免责声明:

1.本文内容综合整理自互联网,观点仅代表作者本人,不代表本站立场。

2.资讯内容不构成投资建议,投资者应独立决策并自行承担风险。

你可能感兴趣